Skip to content

Libbpf eBPF macro __percpu_kptr

v1.3.0

The __percpu_kptr macros is used to tag a pointer to tell the verifier it holds per-CPU pointers to kernel memory.

Definition

#define __percpu_kptr __attribute__((btf_type_tag("percpu_kptr")))

Usage

This macro can used on type definitions for both global variables and fields in map values. It informs the verifier that the pointer is a per-CPU kernel pointer.

Docs could be improved

This part of the docs is incomplete, contributions are very welcome

Example

#include "bpf_experimental.h"

struct val_t {
    long b, c, d;
};

struct elem {
    long sum;
    struct val_t __percpu_kptr *pc;
};

struct {
    __uint(type, BPF_MAP_TYPE_ARRAY);
    __uint(max_entries, 1);
    __type(key, int);
    __type(value, struct elem);
} array SEC(".maps");

void bpf_rcu_read_lock(void) __ksym;
void bpf_rcu_read_unlock(void) __ksym;

const volatile int nr_cpus;

/* Initialize the percpu object */
SEC("?fentry/bpf_fentry_test1")
int BPF_PROG(test_array_map_1)
{
    struct val_t __percpu_kptr *p;
    struct elem *e;
    int index = 0;

    e = bpf_map_lookup_elem(&array, &index);
    if (!e)
        return 0;

    p = bpf_percpu_obj_new(struct val_t);
    if (!p)
        return 0;

    p = bpf_kptr_xchg(&e->pc, p);
    if (p)
        bpf_percpu_obj_drop(p);

    return 0;
}

/* Update percpu data */
SEC("?fentry/bpf_fentry_test2")
int BPF_PROG(test_array_map_2)
{
    struct val_t __percpu_kptr *p;
    struct val_t *v;
    struct elem *e;
    int index = 0;

    e = bpf_map_lookup_elem(&array, &index);
    if (!e)
        return 0;

    p = e->pc;
    if (!p)
        return 0;

    v = bpf_per_cpu_ptr(p, 0);
    if (!v)
        return 0;
    v->c = 1;
    v->d = 2;

    return 0;
}

int cpu0_field_d, sum_field_c;
int my_pid;

/* Summarize percpu data */
SEC("?fentry/bpf_fentry_test3")
int BPF_PROG(test_array_map_3)
{
    struct val_t __percpu_kptr *p;
    int i, index = 0;
    struct val_t *v;
    struct elem *e;

    if ((bpf_get_current_pid_tgid() >> 32) != my_pid)
        return 0;

    e = bpf_map_lookup_elem(&array, &index);
    if (!e)
        return 0;

    p = e->pc;
    if (!p)
        return 0;

    bpf_for(i, 0, nr_cpus) {
        v = bpf_per_cpu_ptr(p, i);
        if (v) {
            if (i == 0)
                cpu0_field_d = v->d;
            sum_field_c += v->c;
        }
    }

    return 0;
}

/* Explicitly free allocated percpu data */
SEC("?fentry/bpf_fentry_test4")
int BPF_PROG(test_array_map_4)
{
    struct val_t __percpu_kptr *p;
    struct elem *e;
    int index = 0;

    e = bpf_map_lookup_elem(&array, &index);
    if (!e)
        return 0;

    /* delete */
    p = bpf_kptr_xchg(&e->pc, NULL);
    if (p) {
        bpf_percpu_obj_drop(p);
    }

    return 0;
}

SEC("?fentry.s/bpf_fentry_test1")
int BPF_PROG(test_array_map_10)
{
    struct val_t __percpu_kptr *p, *p1;
    int i, index = 0;
    struct val_t *v;
    struct elem *e;

    if ((bpf_get_current_pid_tgid() >> 32) != my_pid)
        return 0;

    e = bpf_map_lookup_elem(&array, &index);
    if (!e)
        return 0;

    bpf_rcu_read_lock();
    p = e->pc;
    if (!p) {
        p = bpf_percpu_obj_new(struct val_t);
        if (!p)
            goto out;

        p1 = bpf_kptr_xchg(&e->pc, p);
        if (p1) {
            /* race condition */
            bpf_percpu_obj_drop(p1);
        }
    }

    v = bpf_this_cpu_ptr(p);
    v->c = 3;
    v = bpf_this_cpu_ptr(p);
    v->c = 0;

    v = bpf_per_cpu_ptr(p, 0);
    if (!v)
        goto out;
    v->c = 1;
    v->d = 2;

    /* delete */
    p1 = bpf_kptr_xchg(&e->pc, NULL);
    if (!p1)
        goto out;

    bpf_for(i, 0, nr_cpus) {
        v = bpf_per_cpu_ptr(p, i);
        if (v) {
            if (i == 0)
                cpu0_field_d = v->d;
            sum_field_c += v->c;
        }
    }

    /* finally release p */
    bpf_percpu_obj_drop(p1);
out:
    bpf_rcu_read_unlock();
    return 0;
}

char _license[] SEC("license") = "GPL";