Program type BPF_PROG_TYPE_CGROUP_SKB
cGroup socket buffer programs are attached to a cGroup and are called for incoming or outgoing packets to or from processes within that cGroup. The programs can filter packets but not modify them.
Usage
cGroup socket buffer programs can be used to filter packets and/or monitor/measure traffic on a per cGroup level.
cGroup socket buffer programs are typically placed in cgroup_skb/egress
or cgroup_skb/ingress
ELF sections depending on if they the program should be attached on the ingress or egress side, the respective attach_type
value is then set to BPF_CGROUP_INET_EGRESS
or BPF_CGROUP_INET_INGRESS
.
Recognized return values are 0
to drop the packet or 1
to pass the packet, there are no enums for these return values.
After v5.3 BPF_CGROUP_INET_EGRESS
programs can also set the 2's bit to indicate congestion occurred and signal to the higher level protocols that they should decrease rate. So 2
is drop + mark congestion and 3
is pass + mark congestion.
Context
cGroup socket buffer programs are called by the kernel with a __sk_buff
context.
This program type isn't allowed to read from and write to all fields of the context since doing so might break assumptions in the kernel or because data isn't available at the point where the program is hooked into the kernel.
Context fields
Attachment
cGroup socket buffer programs are attached to cGroups via the BPF_PROG_ATTACH
syscall or via BPF link.
Example
Example BPF program:
/* Copyright (c) 2019 Facebook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* Sample Host Bandwidth Manager (HBM) BPF program.
*
* A cgroup skb BPF egress program to limit cgroup output bandwidth.
* It uses a modified virtual token bucket queue to limit average
* egress bandwidth. The implementation uses credits instead of tokens.
* Negative credits imply that queueing would have happened (this is
* a virtual queue, so no queueing is done by it. However, queueing may
* occur at the actual qdisc (which is not used for rate limiting).
*
* This implementation uses 3 thresholds, one to start marking packets and
* the other two to drop packets:
* CREDIT
* - <--------------------------|------------------------> +
* | | | 0
* | Large pkt |
* | drop thresh |
* Small pkt drop Mark threshold
* thresh
*
* The effect of marking depends on the type of packet:
* a) If the packet is ECN enabled and it is a TCP packet, then the packet
* is ECN marked.
* b) If the packet is a TCP packet, then we probabilistically call tcp_cwr
* to reduce the congestion window. The current implementation uses a linear
* distribution (0% probability at marking threshold, 100% probability
* at drop threshold).
* c) If the packet is not a TCP packet, then it is dropped.
*
* If the credit is below the drop threshold, the packet is dropped. If it
* is a TCP packet, then it also calls tcp_cwr since packets dropped by
* a cgroup skb BPF program do not automatically trigger a call to
* tcp_cwr in the current kernel code.
*
* This BPF program actually uses 2 drop thresholds, one threshold
* for larger packets (>= 120 bytes) and another for smaller packets. This
* protects smaller packets such as SYNs, ACKs, etc.
*
* The default bandwidth limit is set at 1Gbps but this can be changed by
* a user program through a shared BPF map. In addition, by default this BPF
* program does not limit connections using loopback. This behavior can be
* overwritten by the user program. There is also an option to calculate
* some statistics, such as percent of packets marked or dropped, which
* a user program, such as hbm, can access.
*/
#include "hbm_kern.h"
SEC("cgroup_skb/egress")
int _hbm_out_cg(struct __sk_buff *skb)
{
long long delta = 0, delta_send;
unsigned long long curtime, sendtime;
struct hbm_queue_stats *qsp = NULL;
unsigned int queue_index = 0;
bool congestion_flag = false;
bool ecn_ce_flag = false;
struct hbm_pkt_info pkti = {};
struct hbm_vqueue *qdp;
bool drop_flag = false;
bool cwr_flag = false;
int len = skb->len;
int rv = ALLOW_PKT;
qsp = bpf_map_lookup_elem(&queue_stats, &queue_index);
// Check if we should ignore loopback traffic
if (qsp != NULL && !qsp->loopback && (skb->ifindex == 1))
return ALLOW_PKT;
hbm_get_pkt_info(skb, &pkti);
// We may want to account for the length of headers in len
// calculation, like ETH header + overhead, specially if it
// is a gso packet. But I am not doing it right now.
qdp = bpf_get_local_storage(&queue_state, 0);
if (!qdp)
return ALLOW_PKT;
if (qdp->lasttime == 0)
hbm_init_edt_vqueue(qdp, 1024);
curtime = bpf_ktime_get_ns();
// Begin critical section
bpf_spin_lock(&qdp->lock);
delta = qdp->lasttime - curtime;
// bound bursts to 100us
if (delta < -BURST_SIZE_NS) {
// negative delta is a credit that allows bursts
qdp->lasttime = curtime - BURST_SIZE_NS;
delta = -BURST_SIZE_NS;
}
sendtime = qdp->lasttime;
delta_send = BYTES_TO_NS(len, qdp->rate);
__sync_add_and_fetch(&(qdp->lasttime), delta_send);
bpf_spin_unlock(&qdp->lock);
// End critical section
// Set EDT of packet
skb->tstamp = sendtime;
// Check if we should update rate
if (qsp != NULL && (qsp->rate * 128) != qdp->rate)
qdp->rate = qsp->rate * 128;
// Set flags (drop, congestion, cwr)
// last packet will be sent in the future, bound latency
if (delta > DROP_THRESH_NS || (delta > LARGE_PKT_DROP_THRESH_NS &&
len > LARGE_PKT_THRESH)) {
drop_flag = true;
if (pkti.is_tcp && pkti.ecn == 0)
cwr_flag = true;
} else if (delta > MARK_THRESH_NS) {
if (pkti.is_tcp)
congestion_flag = true;
else
drop_flag = true;
}
if (congestion_flag) {
if (bpf_skb_ecn_set_ce(skb)) {
ecn_ce_flag = true;
} else {
if (pkti.is_tcp) {
unsigned int rand = bpf_get_prandom_u32();
if (delta >= MARK_THRESH_NS +
(rand % MARK_REGION_SIZE_NS)) {
// Do congestion control
cwr_flag = true;
}
} else if (len > LARGE_PKT_THRESH) {
// Problem if too many small packets?
drop_flag = true;
congestion_flag = false;
}
}
}
if (pkti.is_tcp && drop_flag && pkti.packets_out <= 1) {
drop_flag = false;
cwr_flag = true;
congestion_flag = false;
}
if (qsp != NULL && qsp->no_cn)
cwr_flag = false;
hbm_update_stats(qsp, len, curtime, congestion_flag, drop_flag,
cwr_flag, ecn_ce_flag, &pkti, (int) delta);
if (drop_flag) {
__sync_add_and_fetch(&(qdp->lasttime), -delta_send);
rv = DROP_PKT;
}
if (cwr_flag)
rv |= CWR;
return rv;
}
char _license[] SEC("license") = "GPL";
Helper functions
Supported helper functions
bpf_cgrp_storage_delete
bpf_cgrp_storage_get
bpf_dynptr_data
bpf_dynptr_from_mem
bpf_dynptr_read
bpf_dynptr_write
bpf_for_each_map_elem
bpf_get_current_task
bpf_get_current_task_btf
bpf_get_listener_sock
bpf_get_local_storage
bpf_get_numa_node_id
bpf_get_prandom_u32
bpf_get_smp_processor_id
bpf_get_socket_cookie
bpf_get_socket_uid
bpf_jiffies64
bpf_kptr_xchg
bpf_ktime_get_boot_ns
bpf_ktime_get_ns
bpf_ktime_get_tai_ns
bpf_loop
bpf_map_delete_elem
bpf_map_lookup_elem
bpf_map_lookup_percpu_elem
bpf_map_peek_elem
bpf_map_pop_elem
bpf_map_push_elem
bpf_map_update_elem
bpf_per_cpu_ptr
bpf_perf_event_output
bpf_probe_read_kernel
bpf_probe_read_kernel_str
bpf_probe_read_user
bpf_probe_read_user_str
bpf_ringbuf_discard
bpf_ringbuf_discard_dynptr
bpf_ringbuf_output
bpf_ringbuf_query
bpf_ringbuf_reserve
bpf_ringbuf_reserve_dynptr
bpf_ringbuf_submit
bpf_ringbuf_submit_dynptr
bpf_sk_ancestor_cgroup_id
bpf_sk_cgroup_id
bpf_sk_fullsock
bpf_sk_lookup_tcp
bpf_sk_lookup_udp
bpf_sk_release
bpf_sk_storage_delete
bpf_sk_storage_get
bpf_skb_ancestor_cgroup_id
bpf_skb_cgroup_id
bpf_skb_ecn_set_ce
bpf_skb_load_bytes
bpf_skb_load_bytes_relative
bpf_skc_lookup_tcp
bpf_snprintf
bpf_snprintf_btf
bpf_spin_lock
bpf_spin_unlock
bpf_strncmp
bpf_tail_call
bpf_task_pt_regs
bpf_tcp_sock
bpf_this_cpu_ptr
bpf_timer_cancel
bpf_timer_init
bpf_timer_set_callback
bpf_timer_start
bpf_trace_printk
bpf_trace_vprintk
bpf_user_ringbuf_drain
KFuncs
Supported kfuncs
bpf_arena_alloc_pages
bpf_arena_free_pages
bpf_cast_to_kern_ctx
bpf_dynptr_adjust
bpf_dynptr_clone
bpf_dynptr_from_skb
bpf_dynptr_is_null
bpf_dynptr_is_rdonly
bpf_dynptr_size
bpf_dynptr_slice
bpf_dynptr_slice_rdwr
bpf_iter_bits_destroy
bpf_iter_bits_new
bpf_iter_bits_next
bpf_iter_css_destroy
bpf_iter_css_new
bpf_iter_css_next
bpf_iter_css_task_destroy
bpf_iter_css_task_new
bpf_iter_css_task_next
bpf_iter_num_destroy
bpf_iter_num_new
bpf_iter_num_next
bpf_iter_task_destroy
bpf_iter_task_new
bpf_iter_task_next
bpf_iter_task_vma_destroy
bpf_iter_task_vma_new
bpf_iter_task_vma_next
bpf_map_sum_elem_count
bpf_preempt_disable
bpf_preempt_enable
bpf_rcu_read_lock
bpf_rcu_read_unlock
bpf_rdonly_cast
bpf_sock_addr_set_sun_path
bpf_wq_init
bpf_wq_set_callback_impl
bpf_wq_start